Newton e os infinitésimos

Pagina de rosto do livro Método das fluxões
Fonte: Wikimedia Commons

Isaac Newton (1642 – 1727), um cientista tímido e reservado, foi para o século XVIII o que Albert Einstein (1879 – 1955) foi para o século XX: um gênio que mudou o paradigma da ciência de seu tempo. Talvez ainda mais do que Einstein, Newton foi não só um criador de uma nova maneira de pensar a ciência natural, mas também um matemático original e profundo que forjou os instrumentos intelectuais do mundo moderno.

Há tanto o que falar de Newton, o último dos magos e o primeiro dos modernos, que toda escolha é uma severa ofensa a sua obra multifacetada. Todavia, limitaremos este texto a um aspecto de seu trabalho sobre uma das mais importantes ferramentas matemáticas da humanidade: o cálculo.

Foi no livro The Method of Fluxions (O método das fluxões), escrito em 1671 mas publicado postumamente em 1736, que Newton apresentou seu método das fluxões, o nome do que hoje conhecemos como derivadas. Derivadas estão no coração do chamado cálculo diferencial e integral e na raiz da revolução científica operada por Newton e seus contemporâneos. Mas por que são assim tão importantes?

Derivadas aparecem em todos o lugares. Quando medimos a velocidade em quilômetros por hora (km/h), a corrente elétrica em coulombs por segundo (C/s), a vazão em litros por segundo (l/s), estamos falando de derivadas. De maneira simplificada, Newton descobriu como, dada a equação da trajetória de um planeta, encontrar a equação de sua velocidade, e vice-versa. Newton derivou uma equação de outra, e essa foi a origem do nome derivada — nome que ele não utilizou.

Geometricamente, o problema envolve encontrar retas tangentes a curvas. O processo é simples uma vez entendido, mas criá-lo não foi nada fácil. Matemáticos, desde a antiguidade, desenvolveram métodos próprios para resolver problemas particulares, mas nenhum método geral que se aplicasse a todas as equações então conhecidas. Newton desenvolveu seu próprio método fazendo uso de um conceito controverso na história da matemática: os infinitésimos.

Tome um número positivo bem pequeno, mas que não seja zero. Suponha que esse número seja 0,01. É possível pensar um número menor? Sim, e até um dez vezes menor: 0,001. É possível pensar em um menor ainda? Sim: 0,0001, novamente dez vezes menor do que o anterior, e assim sucessivamente. Um infinitésimo é menor que todos esses números imagináveis, e ainda assim não é zero. Como isso é possível?

No conjunto dos número reais, isso não é possível. Mesmo assim, Newton fez uso dos infinitésimos bem ciente de suas contradições. Empregou-os com coragem para resolver uma série de problemas persistentes, em linha com outros matemáticos de séculos anteriores que operaram com essas aberrações sem muitos pudores. Mas, por temer críticas e controvérsias, Newton postergou indefinidamente a publicação de seus resultados.

Vamos a um exemplo. Considere a equação mais simples de uma parábola, f(x)=x^2, e considere que precisamos encontrar uma reta tangente em um ponto A(x, y) qualquer, como mostra a figura a seguir:

A reta (em vermelho) tangenciando a curva f (em azul) no ponto A

Em um determinado momento do processo de encontrar a derivada, Newton introduz o infinitésimo “o” e faz o quociente

\frac{(x + o)^2\ -\ x^2}{(x+o)-x} = \frac{2xo+o^2}{o} = 2x+o

Depois, sem mais delongas, despreza o número “o” e encontra a equação derivada 2x. O problema? Introduzir no processo algo diferente de zero e depois desprezá-lo como se fosse zero.

Newton sabia bem disso, como sabiam todos os matemáticos que utilizaram infinitésimos. Tudo funcionava maravilhosamente, mas ninguém conseguiu ignorar um elefante que surgiu na sala: o método também gerava resultados absurdos que pareciam corroer as bases do edifício lógico da matemática. Nunca na história das ciências um elefante tão diminuto causou tantos problemas.

Apesar das contratempos, o método das fluxões continha os germes da ideia moderna de limites, usada para formalizar o conceito de derivadas e expulsar as contradições que os infinitésimos criavam. Mas, para isso, um complicado formalismo teve que ser introduzido no cálculo, gerando uma sopa intragável que a ser digerida pelos pobres coitados dos estudantes de exatas.

Discussão

  1. Newton escreveu uma quantidade impressionante de artigos sobre alquimia e teologia, muito mais do que sobre física e matemática. No entanto, apenas estes tiveram influência duradoura, enquanto os livros de teologia e alquimia foram esquecidos pela história. Por que você acha que isso aconteceu?
  2. Os infinitésimos foram usados com sucesso durante séculos, antes e depois de Newton. Foram descartados pelos matemáticos do século XIX, preocupados com o rigor, e redescobertos na segunda metade do século XX. As contradições que geravam foram domadas e seu emprego foi reabilitado. Ainda assim, poucos os usam atualmente. Você acredita que ideias científicas têm seu tempo, e que, uma vez superadas, não é mais possível reutilizá-las?
  3. Quais são os motivos para que as disciplinas de cálculo diferencial e integral sejam as maiores reprovadoras nas universidades?

Para saber mais

  • cálculo diferencial e integral
  • teorema fundamental do cálculo
  • infinitésimo
  • limites