Categorias
História da matemática Logaritmos Matemática Napier

Logaritmos

A calculadora conhecida como “Ossos de Napier”
Fonte: Wikimedia Commons

Uma experiência comum entre professores de matemática é ouvir de alunos a provocativa pergunta “para que serve?”. E uma experiência ainda mais comum entre os alunos que não fazem tais perguntas é suspeitar que quase toda a matemática que aprenderam não serve para absolutamente nada. Ambas as experiências são falsamente reforçadas quando o tema em questão são os logaritmos.

Foi o matemático escocês John Napier (1550 – 1617) que introduziu os logaritmos como expediente de cálculo para simplificar as tediosas operações com números de muitos dígitos, necessárias aos astrônomos e navegadores da época. Com os logaritmos, operações de multiplicação, divisão e exponenciação se transformam em simples adições, subtrações e multiplicações. Mas como?

Suponha que você necessite realizar a multiplicação 32 x 128 e tem ao seu lado uma tabela de potências de 2. Olhando a tabela, você percebe que 32 = 25 e 128 = 27. Daí percebe que para multiplicar esses números basta somar os expoentes 5 e 7 e achar 12. Com esse valor, você olha de novo na tabela e vê que 212 = 4096, encontrando a resposta da multiplicação. Você evitou uma multiplicação com uma adição e três olhadelas em uma tabela.

Pareceu mais complicado do que realizar a multiplicação? Mas não é. Imagine multiplicar números como 3,476098 e 1,775369 dezenas de vezes durante o dia. Mais fácil seria transformar essas multiplicações todas em adições, olhando em uma tabela os expoentes de 3,476098 e 1,775369, somar esses expoentes e novamente olhar na tabela o número que corresponde ao expoente encontrado. Quando usados dessa forma, esses expoentes são chamados de logaritmos.

Napier viria a aperfeiçoar sua invenção juntamente com o matemático inglês Henry Briggs (1561 – 1630) e, a partir de então, os logaritmos se tornariam o mais importante avanço nas técnicas de cálculo até a invenção do computador digital, cerca de 400 anos depois.

Napier dedicou muito do seu tempo para desenvolver instrumentos de cálculo. Além dos logaritmos, desenvolveu uma espécie de ábaco chamado carinhosamente de ossos de Napier. A figura no início deste post mostra como era um instrumento desse: tabelas de multiplicação eram incorporadas em hastes que, quando giradas, transformavam multiplicações em adições e divisões em subtrações, seguindo a mesma lógica dos logaritmos. Em versões mais avançadas, extraíam até raízes quadradas. Os ossos de Napier foram inspirados em ideias de matemáticos árabes e também nas de Fibonacci, mostrando mais uma vez a influência de ambos na cultura europeia.

Pouco antes das calculadoras eletrônicas, era comum encontrar engenheiros utilizando réguas de cálculo em seus projetos. Esses instrumentos fascinantes incorporavam os logaritmos em sua construção e possibilitavam rapidez e precisão de resultados, dispensando tabelas e cálculos manuais. Ainda hoje são interessantes como instrumentos didáticos, e é comum encontrá-las em laboratórios de matemática nas universidades.

Alguns professores se desviam da pergunta impertinente “para que serve” dizendo coisas como “no futuro você verá” ou “para desenvolver o raciocínio”. Além de frustrarem as ambições científicas dos alunos, respostas como essas concorrem para demonstrar a ignorância do professor e as deficiências de sua formação. Melhor seria dizerem — e procurarem mostrar — como os logaritmos são usados na escala Richter, que mede a intensidade dos terremotos; no cálculo do potencial hidrogeniônico, o famoso pH, que calcula acidez ou a basicidade das substâncias; no cálculo da complexidade computacional, que classifica algoritmos segundo sua dificuldade inerente; na música, com o cálculo dos intervalos musicais; no cálculo da entropia de um sistema, medindo seu nível de desordem; e no cálculo da dimensão dos fractais. Mas será que os professores não acharão que isso “complica demais as coisas”?

Discussão

  1. Os logaritmos surgiram devido a necessidades práticas dos cientistas. Você acha que toda matemática é criada a partir de alguma urgência pragmática?
  2. Se os esforços dos matemáticos se concentraram, durante muito tempo, em construir máquinas que fizessem as contas mais tediosas para eles, por que você deveria aprender a realizá-las com lápis e papel?
  3. Você consegue dizer alguma outra aplicação dos logaritmos além daquelas discutidas no texto?

Para saber mais

Procure saber mais sobre:

  • exponenciação e radiciação
  • régua de cálculo
  • escala Richter
  • pH
  • dimensão fractal
Categorias
Arte fractal História da matemática

Bombelli e os números complexos

Fractal criado com números complexos
Fonte: Arquivo pessoal

Há cerca de 500 anos atrás, quando matemáticos ainda se debatiam com números negativos, uma nova classe de números ainda mais estranha surgia: os números complexos. Apesar de realizarem seu début na obra de Cardano, coube a Rafael Bombelli (1526 – 1572) iniciar o primeiro estudo sistemático desses objetos que viriam revolucionar o conceito de número.

Bombelli foi um engenheiro talentoso que viveu em um ambiente intelectual onde as mais avançadas técnicas algébricas estavam facilmente disponíveis. Fazendo bom uso de sua mentalidade prática, escreveu um livro que pode ser lido ainda hoje por leigos e profissionais. Editado no mesmo ano da morte de seu autor, em 1572, essa obra possui o título originalíssimo de… Algebra.

Possuidor da rara virtude de ser claro e acessível, esse livro fez com que Bombelli se tornasse o primeiro europeu a escrever as regras de operação com números inteiros:

Mais vezes mais faz mais.

Menos vezes menos faz mais.

Mais vezes menos faz menos.

Menos vezes mais faz menos.

Mais 8 vezes mais 8 faz mais 64.

Menos 5 vezes menos 6 faz mais 30.

Menos 4 vezes mais 5 faz menos 20.

Além disso, 5 vezes menos 4 produz menos 20.

Da Algebra, de Bombelli

Mais do que pelo seu trabalho com inteiros, Bombelli se destaca na história da matemática por ter sido o primeiro a operar com números complexos, aqueles que envolvem raízes de números negativos, como vistos nesse post.

Bombelli teve a presciência de perceber como os complexos eram essenciais na resolução de cúbicas e quárticas e possivelmente em outros problemas. Ele introduziu a simbologia \sqrt{-1}, que mais tarde viria a ser simplificada para i por L. Euler (1707 – 1783), para dar um perfil manuseável a esses números.

Bombelli sabia que os complexos eram potencialmente problemáticos. Entendia que não eram positivos nem negativos, e também que considerá-los como simples raízes era uma fonte de confusão – o que de fato aconteceu com os matemáticos dos séculos seguintes. Ao chamar a \sqrt{-1} de “mais de menos”, e - \sqrt{-1} de “menos de mais”, Bombelli forneceu as regras formais de operação que usamos ainda hoje, revelando a índole mecânica da álgebra, que não necessita de significados concretos para funcionar perfeitamente. Além disso, os complexos nos mostraram que pensar números como representações de quantidades ou magnitudes é tão falso quanto imaginar que lógica e leis do pensamento são sinônimas.

Os números complexos são absolutamente essenciais na matemática pura e aplicada. Aparecem na solução de diversos tipos de equações diferenciais, presentes na maioria dos modelos que os cientistas criam sobre o mundo. Sem elas, você não estaria lendo este texto na tela de seu computador ou celular. Ao observar a imensa gama de suas aplicações, percebemos que são os bizarros complexos, para os quais temos imensas dificuldades em atribuir um sentido concreto, os mais práticos dos números que conhecemos.

Discussão

  1. O que é um número?
  2. Bombelli conseguiu escrever um livro que era ao mesmo tempo profundo e simples de se ler. Você consegue citar algum outro livro de matemática com essas qualidades?
  3. Fractais, como aquele no início deste texto, são criados com a manipulação computacional de números complexos, e servem como uma das portas de entrada para a reflexão sobre arte e matemática. Por que será que tanta gente vê relações entre esses dois domínios aparentemente tão distantes?

Para saber mais

  • equações diferenciais
  • modelo matemático
  • fractais
Categorias
Álgebra História da matemática

Cardano, a álgebra e a probabilidade

Página inicial da Ars Magna
Fonte: Wikimedia Commons

Se algo existe que nos faça pensar em não utilizar fontes primárias no ensino de matemática, esse algo é o livro Ars Magna, do médico, matemático, astrólogo e jogador inveterado italiano Girolamo Cardano (1501 – 1576), um livro moroso e entediante em franco contraste com a vida de seu autor.

Cardano nasceu em 1501 em Pavia, na Itália, e formou-se em medicina em 1525 na Universidade de Pádua. Exerceu a profissão de médico em cidades pequenas até se mudar para Milão, onde obteve licença para ensinar matemática, paixão intelectual que perseguiu até seus últimos dias. Embora tenha escrito cerca de 200 obras sobre medicina, biologia, física, química, astronomia, mecânica, filosofia e até astrologia, foi na matemática que se mostrou mais proficiente e mais fecundo.

Sua obra mais conhecida é a Artis magnae, sive de regulis algebraicis (Da grande arte, ou sobre as regras da álgebra), a que nos referimos simplesmente como Ars Magna. Nela encontramos a primeira publicação de soluções puramente algébricas de equações cúbicas e quárticas, equações polinomiais de graus 3 e 4, respectivamente. Cardano, no entanto, não foi seu descobridor: ele atribui a Scipione del Ferro (1465 – 1526) a solução da cúbica e a seu aluno Ludovico Ferrari (1522 – 1565) a da quártica.

É preciso parar e observar que esse foi um momento muito importante na história da matemática. A solução de equações polinomiais de qualquer grau é uma busca milenar que começou na antiguidade, tendo ocupado gerações e gerações de matemáticos amadores e profissionais. Com Cardano, as equações de graus 1, 2, 3 e 4 foram definitivamente solucionadas. Foi o passo seguinte, a busca da solução da equação de quinto grau, a quíntica, que ocasionou a criação da moderna álgebra abstrata. Niels Abel (1802 – 1829) e Evariste Galois (1811 – 1832) foram os responsáveis por demonstrar, independentemente, que a quíntica só possui soluções para casos particulares, ficando o caso geral ax^5+bx^4+cx^3+dx^2+ex+f=0 sem uma fórmula que o resolva.

Outro fato interessante da história da matemática do período é saber que os números negativos, hoje tão comuns, ainda não eram bem aceitos àquela época. Historicamente ligado às ideias de quantidade e de magnitude, o conceito de número não admitia algo “menor do que o nada”, engano comum entre os estudantes de matemática ainda hoje. Essa proibição cognitiva obrigou Cardano, assim como todos os matemáticos da época, a tratar equações do tipo x^3+ax=b de maneira diferente de equações do tipo x^3=ax+b, o que hoje resolvemos com o mesmo método. No entanto, ele de fato operou formalmente com números negativos e, de maneira desconcertante, também com números complexos, aqueles que envolviam raízes de números negativos.

Na Ars Magna, Cardano apresenta o seguinte problema: encontre dois números tais que sua soma seja 10 e seu produto seja 40. As respostas são 5+\sqrt{-15} e 5-\sqrt{-15}, que Cardano chamou de “sofísticas”, pois não viu nelas nenhum significado físico. Mesmo assim, Cardano foi adiante, realizou as contas, corajosamente, e viu que as soluções satisfaziam as condições do problema. Apesar do sucesso, declarou que essas respostas seriam tão sutis quanto inúteis. Esta foi a primeira aparição de números complexos em uma obra impressa.

Cardano era um jogador contumaz e um enxadrista talentoso, o que lhe rendeu um bom dinheiro durante sua vida, o suficiente para saldar as múltiplas dívidas que sistematicamente contraía. Como não poderia deixar de ser, escreveu também sobre jogos no Liber de ludo aleae (Livro dos jogos de azar), que contém o primeiro tratamento sistemático da probabilidade, outro grande debate da época. Mas o que torna esse livro impertinentemente delicioso são as muitas técnicas para trapacear em diversos jogos, um brinde de Cardano à vida de apostador que ele adorava viver.

Discussão

  1. Além de cientista, Cardano era também astrólogo, tendo feito inúmeros mapas astrais para os poderosos da época. Sabemos hoje que a astrologia é uma pseudociência sem a mínima chance de voltar a ter o respeito que teve antigamente. Mas ainda é extremamente popular. O que vc pensa disso?
  2. Você consegue imaginar um argumento que justifique tanta energia empregada, durante tanto tempo, para resolver equações polinomiais?
  3. Se um número não é a medida de uma quantidade, então o que ele é?

Para saber mais

  • resolução da cúbica por radicais
  • resolução da quíntica
  • álgebra abstrata
  • números complexos
  • probabilidade
Categorias
Fibonacci História da matemática

Fibonacci e seu Liber Abaci

Página do Liber Abaci com o famoso problema dos coelhos
Fonte: Wikimedia Commons

Leonardo de Pisa (c. 1170 – c. 1240/1250) é o mais interessante matemático do século XIII. Nascido em Pisa, na Itália, mudou-se ainda jovem com o pai, Guglielmo dei Bonacci, para a cidade de Bugia, na Argélia, onde passou parte de sua vida. Matemático e escritor, é autor do influente Liber Abaci (Livro do Ábaco), obra que termos a oportunidade de conhecer a seguir.

Ter morado na Argélia, no norte da África, não é um detalhe na vida de Fibonacci. Pelo contrário, é sua parte mais importante: foi no milenar porto de Bugia, onde eram embarcadas as mercadorias vindas do Oriente em direção à Europa, que Leonardo, posteriormente apelidado Fibonacci (de filho de Bonacci), deu início a seus estudos da matemática ágil usada pelos árabes em suas transações comerciais.

Compelido por sua prática de comerciante, Fibonacci foi estudar em Constantinopla, onde aprendeu principalmente nos livros de Al-Khwarizmi e de muitos outros matemáticos árabes. Tomou contato com os algarismos indo-arábicos e com as técnicas de cálculo facilitadas por eles. Lembremo-nos de que na Europa, naquela época, as operações aritméticas que hoje realizamos com facilidade eram laboriosamente feitas com ábacos e algarismos romanos. Toda essa tradição de cálculo seria rapidamente esquecida com a introdução das novas técnicas que Fibonacci levaria em seu mais conhecido livro.

No Liber Abaci (pronunciamos líber ábaki), Fibonacci introduz o modo dos hindus, a maneira como os indianos realizavam operações. No início de seu livro, escreve:

Estas são as nove figuras dos Indianos:
9 8 7 6 5 4 3 2 1
Com estas nove figuras, e com o sinal 0, que em árabe é chamado de zéfiro, qualquer número pode ser escrito.

Mas os números ainda não tinham esse formato. Basta uma olhadela na página que ostenta o famoso problema dos coelhos, no início deste texto, para constatarmos que o formato de nossos algarismos ainda sofreriam algumas mutações. E, em verdade, não foi a primeira vez que apareceram na Europa: o matemático Gerbert d’Aurillac (c. 950 – 1003), que se tornaria o papa Silvestre II, já os conhecia e com eles operava, cerca de duzentos anos antes.

Levaria ainda algum tempo para que o Liber Abaci exercesse alguma influência nas práticas de cálculo de seu tempo. Fibonacci escreveria outros livros, como o Practica Geometriae (Prática de Geometria), o Flos (Flor) e o Liber Quadratorum (Livro dos Quadrados), mas apenas o Liber Abaci seria destinado tanto a acadêmicos quanto a comerciantes.

É nesse livro que surge o famoso problema dos coelhos, que dá origem à sequência de Fibonacci, objeto de admiração e estudo por amadores e matemáticos profissionais, dada sua aparente onipresença em muitas áreas da matemática pura e aplicada, assim como na física, na química, na biologia, nas engenharias e até nas artes. E o problema é o seguinte:

Quantos pares de coelhos são gerados a partir de um par em um ano?
Alguém põe um par de coelhos em um certo lugar totalmente cercado por um muro para saber quantos pares de coelhos são gerados a partir desse par inicial em um ano. A natureza desses coelhos é tal que a cada mês um par de coelhos produz outro par, e coelhos começam a gerar coelhos a partir do segundo mês após seu nascimento.

Sua solução dá origem à sequência

1 2 3 5 8 13 21 34 55 89 144 233 377…

à qual foi acrescentada os números 0 e 1, passando a ser escrita como

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377…

Essa sequência é formada recursivamente: a soma de dois números sucessivos forma o terceiro. Por exemplo: 0 + 1 = 1 \\ 1 + 1 = 2 \\ 1 + 2 = 3 \\ 2 + 3 = 5 \\ 3 + 5 = 8 e assim sucessivamente. Observe que a sequência apresenta um padrão do tipo par-ímpar-ímpar: 0, 1, 1, depois 2, 3, 5 e assim por diante. Observe também que se você pegar o número seguinte e dividir pelo número anterior, você formará uma sequência que se aproximará do número 1,618…:

8/5 = 1,6...\\13/8 = 1,625...\\21/13 = 1,615...\\34/21 = 1,619...\\55/34 = 1,617...\\89/55 = 1,618...

e assim por diante, convergindo para aquele que é visto como um dos mais notáveis números da matemática, a constante \phi = 1,61803398875\dots (pronunciamos fi).

Essa constante surge no antigo problema de se dividir um segmento em média e extrema razão, que significa encontrar um ponto em um segmento que o divida em duas partes, uma maior e uma menor, de tal maneira que a razão (divisão) do segmento todo pelo segmento maior é a mesma razão (divisão) do segmento maior pelo segmento menor. Essa é a chamada razão áurea.

Embora pareça abstrata, a razão áurea é usada por alguns artistas para dar um certo balanço em suas obras, sejam elas literatura, música ou artes visuais. Há quem diga que ela aparece nas proporções de tudo o que é belo e equilibrado, tanto na natureza quanto nas obras humanas, afirmação que beira mais a superstição do que a evidência científica. No entanto, é verdade que \phi aparece aqui e ali em belíssimos teoremas da geometria e da teoria dos números. Mas única evidência que temos, depois de pesquisarmos com calma o assunto, é que basta um empurrãozinho em mentes menos críticas para provocar uma avalanche de crendices populares.

O Liber Abaci também lida com medidas, moedas, cálculo de lucro e de juros, números perfeitos, números primos e compostos, números irracionais, extração de raízes e algumas demonstrações de geometria. É um livro de interesse tanto prático quanto teórico, o que garantiu sua sobrevivência e utilidade pelos séculos seguintes. E, como muitos outros livros interessantes da história, não conhece sequer cheiro de tradução para o português…

Discussão

  1. Como você acha que Fibonacci resolveu o problema dos coelhos?
  2. O ábaco é um instrumento que assume muitas formas em diferentes países. É bastante utilizado na educação básica com muito bons resultados. Aprenda a operar um deles, o soroban (ábaco japonês), e teste seus conhecimentos fazendo 437 + 585.
  3. A sequência de Fibonacci é tão admirável que um exército de amadores e profissionais passaram a vê-la em muitos lugares. Um desses é na natureza: na inflorescência do girassol, nas proporções dos animais e até nos braços da galáxia. Toda a natureza se estruturaria segundo “padrões de Fibonacci”: a matemática está mesmo em tudo ou somos nós que queremos vê-la assim, onipresente?

Para saber mais

O que você consegue dizer sobre:

  • Constantinopla
  • matemática e capitalismo
  • sequência recursiva
  • razão áurea
Categorias
História da matemática

Omar Khayyam, a poesia e a matemática

Página de um tratado sobre equações cúbicas e interseção de cônicas, de Omar Khayyam
Fonte: Wikimedia Commons

Aos céus enviei minha alma
Em busca do segredo eterno…
Na volta, me diz, já bem calma:
‘Eu mesma sou Céu e Inferno’

Do Rubaiyat

Omar Khayyam nasceu em maio de 1048 na rica e próspera Nixapur, no nordeste do Irã, tendo ali vivido e morrido, em dezembro de 1131, após uma vida de grandes realizações.

Khayyam é uma das personalidades iranianas mais conhecidas em todo o mundo. Não pelos seus feitos científicos, mas por sua obra poética mais conhecida: o Rubaiyat, uma coleção de quadras que versam sobre a alegria e o sentido de viver. A que abre este texto é uma transcriação que fiz a partir da tradução de E. Fitzgerald, a mais utilizada em língua inglesa. Existem várias traduções em português, partindo de versões inglesas ou francesas, mas nenhuma direta do persa. Alguém aí se habilita?

Embora famoso por sua obra poética, Khayyam não fica atrás em seus feitos científicos. A página mostrada acima faz parte de um tratado sobre a resolução de equações cúbicas através da interseção de cônicas. Embora o material fosse já conhecido, Khayyam generalizou os métodos e os aplicou com bastante sucesso, fazendo avançar as técnicas de solução de equações polinomiais.

Khayyam conhecia uma fórmula para calcular os coeficientes da expansão de (a+b)^n. Por exemplo, os coeficientes de (a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+ b^5 são 1, 5, 10, 10, 5 e 1, e Khayyam sabia como calcular cada um deles sem realizar a expansão de (a+b)^5. Para os mais astutos, esses coeficientes fazem a sexta linha do famoso triângulo de Pascal, conhecido por árabes, indianos e chineses séculos antes do filósofo e matemático Blaise Pascal (1623 – 1662) ter nascido. Se você acha que há muito nome europeu indevidamente na matemática, saiba que não está só!

Outra área em que Khayyam se destacou foi na geometria, principalmente pelo seu livro Sharh ma ashkala min musadarat kitab Uqlidis (Comentários sobre as Dificuldades nos Postulados no Livro de Euclides). Nessa obra, Khayyam discute o famoso quinto postulado de Euclides e tropeça nas geometrias não-euclidianas, um ramo da matemática que iria florescer somente sete séculos depois.

Discussão

  1. Os contatos comerciais por toda a Ásia sempre foram fortes e intensos, levando ao desenvolvimento cultural e científico de muitas regiões. Você acha que povos asiáticos possuíam uma ciência mais avançada do que a ciência ocidental à época de Khayyam?
  2. Hoje chamamos astrônomos, geômetras e algebristas da antiguidade de matemáticos, embora eles mesmos não usassem esse termo. Você acha que é correto ou não chamá-los assim?
  3. Por que você acha que o tema dos postulados de Euclides foi tão discutido durante a história da matemática?

Para saber mais

  • Rubaiyat
  • cônicas
  • equações polinomiais
  • coeficientes binomiais
  • postulado das paralelas