Categorias
História da matemática Matemática

20 Episódios da História da Matemática

Este é o título do nosso novo livro, disponível para compra pela Amazon:

Caso a página não apareça acima, você pode clicar no link https://www.amazon.com.br/dp/B08PBZHRPD para ser levado direto à Amazon.

Este livro é uma compilação e reformulação das 20 últimas postagens sobre história da matemática publicadas aqui. Espero que você goste!

Categorias
História da matemática Infinitésimos Leibniz Matemática Números binários

O gênio de Leibniz

Trigramas do I Ching e os números binários
Fonte: Leibniz e a aritmética binária

Contemporâneo de Isaac Newton (1643 – 1727), com quem se correspondeu, Gottfried Wilhelm Leibniz (1646 – 1716) foi uma dessas personalidades incontornáveis da história das ciências e da filosofia. Polímata de grande amplitude e profundidade, Leibniz foi outra figura central no desenvolvimento da matemática dos séculos XVII e XVIII. Mas não só dela: a lógica, a física, a biologia, a medicina, a psicologia, a linguística e a moderna computação lhe devem grandes tributos.

Como Newton, mas de maneira independente, Leibniz também desenvolveu sua versão do cálculo, tendo criado a notação mais utilizada atualmente. Seu cálculo era igualmente baseado em infinitésimos, geradores de desconcertantes contradições, mas Leibniz encarou o problema e buscou uma fundamentação clara e objetiva, dando os primeiros passos concretos para sua inclusão legítima no panteão matemático. No entanto, foi apenas na segunda metade do século XX, com a criação da análise não-standard por Abraham Robinson (1918 – 1974), que os infinitésimos foram finalmente reabilitados e puderam ser utilizados com tranquilidade pelos matemáticos — ainda que bem poucos o façam.

Leibniz era um lógico atento e profundo. Nesse terreno, fez uma contribuição fundamental: o princípio da identidade dos indiscerníveis, que afirma que duas coisas que têm o mesmo conjunto de propriedades são, na verdade, a mesma coisa. Juntamente com o princípio da não-contradição e o princípio da razão suficiente, esse é considerado um dos três grandes princípios da metafísica. Metodologicamente, ao transformar uma entidade na lista de propriedades que a definem, Leibniz nos deu uma lupa para a crítica social, uma vez que todas nossas ideias de universalidade passam por escolhas de propriedades comuns a classes de indivíduos, e essas escolhas não são naturais, mas ideologicamente motivadas.

Leibniz era também um gênio mecânico. Projetou e construiu a primeira calculadora capaz de realizar todas as quatro operações aritméticas, a Staffelwalze (contadora de passos):

Réplica da Staffelwalze de Leibniz
Fonte: Wikimedia Commons

Como outros cientistas, Leibniz acreditava que cálculos laboriosos ocupavam um precioso tempo e que qualquer pessoa poderia fazer a mesma coisa com o auxílio de uma máquina. A Staffelwalze, porém, tinha um projeto tão delicado e sutil de engrenagens, tão além das habilidades dos artesãos da época, que apenas duas cópias foram feitas. A Leibniz, que pretendia comercializá-la, coube apenas se conformar.

Fascinado com dispositivos mecânicos e com a automação de ações repetitivas, Leibniz pretendeu levar essas ideias para outros domínios de atividade humana. Imaginava, por exemplo, que contendas e disputas judiciais poderiam ser resolvidas se as partes conseguissem codificar suas demandas em uma espécie de linguagem a ser manipulada algebricamente, como em uma máquina, produzindo a solução do impasse.

A ideia de criar uma linguagem universal que codificasse os entes do mundo e suas relações ocupou Leibniz durante sua juventude e muito de sua vida adulta. Seus esforços nessa direção passaram tanto pela filosofia quanto pela matemática, e inspiraram a criação de línguas artificiais, como o esperanto, além de ter dado partida na moderna teoria da computação, que tem seu texto fundador no artigo Explication de l’arithmétique binaire, qui se sert des seuls caractères 0 et 1, avec des remarques sur son utilité, et sur ce qu’elle donne le sens des anciennes figures Chinoises de Fohi (Explicação da aritmética binária, que se serve apenas dos caracteres 0 e 1, com observações sobre sua utilidade e sobre o sentido que dá às antigas figuras chinesas de Fuxi), que pode ser lido com um click no extenso título acima.

Nesse artigo, Leibniz mostra como codificar todos os números através de um sistema de numeração de base 2 que necessita apenas de dois símbolos, 0 e 1. Além disso, e porque recebeu de um amigo uma cópia do I Ching, Leibniz percebeu as ligações entre os trigramas do livro e o seu sistema, vislumbrando assim mais um passo na construção da sua língua universal, chamado por ele de characteristica universalis.

Vamos a um exemplo. Tome a sequência geométrica 1, 2, 4, 8, 16, 32… em que cada número é o dobro do número anterior. Leibniz percebeu que qualquer número inteiro pode ser escrito como a soma de alguns números dessa série. Por exemplo, 51 pode ser escrito como 32 + 16 + 2 + 1, começando do maior número para o menor. Observe que você não usou os números 8 e 4. Assim, se você fixar a série como 32, 16, 8, 4, 2, 1 e “marcar” com 1 aqueles números que foram utilizados e com 0 aqueles que não o foram, temos a sequência 1, 1, 0, 0, 1, 1, indicando que usei 32, usei 16, não usei 8, não usei 4, usei 2 e usei 1. Escrevendo sem as vírgulas, temos o número 110011, que lemos um, um, zero, zero, um, um.

O artigo vai além e indica como somar, subtrair, multiplicar e dividir esses números binários. O que Leibniz não imaginou é que esse sistema de numeração viria a ser utilizado 250 anos depois no desenvolvimento dos modernos computadores — do celular que você usa para ler este texto.

Discussão

  1. Você acha que as operações aritméticas devem ser ensinadas nas escolas apenas para que possamos operar computadores com segurança? Se uma máquina calcula melhor do que nós, por que precisamos aprender, por exemplo, a dividir dois números longos?
  2. O princípio dos indiscerníveis de Leibniz é um princípio lógico definitivo e universal? Você concorda com ele?
  3. Você acredita na possibilidade de criação de uma língua universal a ser utilizada na comunicação humana?
  4. A numeração binária de Leibniz foi utilizada pelo matemático inglês George Boole (1815 – 1864) na algebrização da lógica, algebrização que foi utilizada pelos pioneiros da computação digital. Você acha que esse é um exemplo de como o conhecimento desinteressado e a pesquisa básica sem pretensões utilitárias deve ser mantida e custeada com dinheiro público?

Para saber mais

  • análise não-standard
  • princípio da não-contradição
  • línguas artificiais
  • characteristica universalis
  • I Ching
Categorias
História da matemática Infinitésimos Matemática Newton

Newton e os infinitésimos

Pagina de rosto do livro Método das fluxões
Fonte: Wikimedia Commons

Isaac Newton (1642 – 1727), um cientista tímido e reservado, foi para o século XVIII o que Albert Einstein (1879 – 1955) foi para o século XX: um gênio que mudou o paradigma da ciência de seu tempo. Talvez ainda mais do que Einstein, Newton foi não só um criador de uma nova maneira de pensar a ciência natural, mas também um matemático original e profundo que forjou os instrumentos intelectuais do mundo moderno.

Há tanto o que falar de Newton, o último dos magos e o primeiro dos modernos, que toda escolha é uma severa ofensa a sua obra multifacetada. Todavia, limitaremos este texto a um aspecto de seu trabalho sobre uma das mais importantes ferramentas matemáticas da humanidade: o cálculo.

Foi no livro The Method of Fluxions (O método das fluxões), escrito em 1671 mas publicado postumamente em 1736, que Newton apresentou seu método das fluxões, o nome do que hoje conhecemos como derivadas. Derivadas estão no coração do chamado cálculo diferencial e integral e na raiz da revolução científica operada por Newton e seus contemporâneos. Mas por que são assim tão importantes?

Derivadas aparecem em todos os lugares. Quando medimos a velocidade em quilômetros por hora (km/h), a corrente elétrica em coulombs por segundo (C/s), a vazão em litros por segundo (l/s), estamos falando de derivadas. De maneira simplificada, Newton descobriu como, dada a equação da trajetória de um planeta, encontrar a equação de sua velocidade, e vice-versa. Newton derivou uma equação de outra, e essa foi a origem do nome derivada — nome que ele não utilizou.

Geometricamente, o problema envolve encontrar retas tangentes a curvas. O processo é simples uma vez entendido, mas criá-lo não foi nada fácil. Matemáticos, desde a antiguidade, desenvolveram métodos próprios para resolver problemas particulares, mas nenhum método geral que se aplicasse a todas as equações então conhecidas. Newton desenvolveu seu próprio método fazendo uso de um conceito controverso na história da matemática: os infinitésimos.

Tome um número positivo bem pequeno, mas que não seja zero. Suponha que esse número seja 0,01. É possível pensar um número menor? Sim, e até um dez vezes menor: 0,001. É possível pensar em um menor ainda? Sim: 0,0001, novamente dez vezes menor do que o anterior, e assim sucessivamente. Um infinitésimo é menor que todos esses números imagináveis, e ainda assim não é zero. Como isso é possível?

No conjunto dos número reais, isso não é possível. Mesmo assim, Newton fez uso dos infinitésimos bem ciente de suas contradições. Empregou-os com coragem para resolver uma série de problemas persistentes, em linha com outros matemáticos de séculos anteriores que operaram com essas aparentes aberrações lógicas sem muitos pudores. Mas, por temer críticas e controvérsias, Newton postergou indefinidamente a publicação de seus resultados.

Vamos a um exemplo bem simples. Considere a equação mais simples de uma parábola, f(x)=x2, e considere que precisamos encontrar uma reta tangente em um ponto A(x, y) qualquer, como mostra a figura a seguir:

A reta (em vermelho) tangenciando a curva f (em azul) no ponto A

Em um determinado momento do processo de encontrar a derivada, Newton introduziria o infinitésimo “o” e faria o quociente

\frac{(x + o)^2\ -\ x^2}{(x+o)-x} = \frac{2xo+o^2}{o} = 2x+o

Depois, sem mais delongas, desprezaria o número “o” e encontraria a equação derivada 2x. O problema? Introduzir no processo algo diferente de zero e depois desprezá-lo como se fosse zero.

Newton sabia bem disso, como sabiam todos os matemáticos que utilizaram infinitésimos. Tudo funcionava maravilhosamente, mas ninguém conseguiu ignorar um elefante que surgiu na sala: o método parecia corroer as bases lógicas do edifício da matemática. Nunca na história das ciências um elefante tão diminuto causou tantos problemas.

Apesar dos contratempos, o método das fluxões continha os germes da ideia moderna de limites, usada para formalizar o conceito de derivadas e expulsar as contradições que os infinitésimos criavam. Mas, para isso, um complicado formalismo teve que ser introduzido no cálculo, gerando uma sopa de letrinhas intragável que os pobres coitados dos estudantes de exatas devem digerir nos modernos — e antipedagógicos — cursos universitários de cálculo.

Discussão

  1. Newton escreveu uma quantidade impressionante de artigos sobre alquimia e teologia, muito mais do que sobre física e matemática. No entanto, apenas estes últimos tiveram influência duradoura, enquanto os livros de teologia e alquimia foram esquecidos pela história. Por que você acha que isso aconteceu?
  2. Os infinitésimos foram usados com sucesso durante séculos, antes e depois de Newton. Foram descartados pelos matemáticos do século XIX, preocupados com o rigor, e redescobertos na segunda metade do século XX. As contradições que geravam foram domadas e seu emprego foi reabilitado. Ainda assim, pouquíssimos os utilizam atualmente. Você acredita que ideias científicas têm seu tempo, e que, uma vez superadas, não é mais possível reutilizá-las?
  3. Quais são os motivos para que as disciplinas de cálculo diferencial e integral sejam as maiores reprovadoras nas universidades?

Para saber mais

  • cálculo diferencial e integral
  • teorema fundamental do cálculo
  • infinitésimo
  • limites e notação \epsilon - \delta
Categorias
Descartes Geometria Geometria analítica História da matemática

Descartes e a geometria analítica

O sistema do GPS e a técnica de triangulação
Fonte: Oficina da Net

O GPS (Global Position System – Sistema de Posicionamento Global), massivamente utilizado em aplicativos de transporte, foi uma invenção que teve início em 1957, quando a antiga União Soviética lançou o primeiro satélite da história — o Sputnik. A ideia de localizar objetos em terra a partir do espaço foi uma das motivações do projeto, mas foram os Estados Unidos que primeiro desenvolveram o sistema de localização, disponível a partir de 2000 para toda a população. O GPS faz uso, e de maneira até bem simples, de um sistema de coordenadas espaciais, provido pelo que hoje chamamos de geometria analítica.

A geometria analítica tem uma história antiga e, como todas as criações matemáticas, ela não surge completa e definitiva. Seu longo amadurecimento ocorreu nas mãos de matemáticos que precisavam localizar pontos e curvas no plano e no espaço a partir de uma referência. Esse referenciamento pode ser feito de várias maneiras, cada uma dando origem a um sistema de coordenadas. Os sistemas mais empregados hoje são o de coordenadas polares, largamente utilizado por Isaac Newton (1643 – 1727), e o de coordenadas cartesianas, assim nomeado em homenagem ao matemático francês René Descartes (1596 – 1650).

Talvez a mente mais lúcida de seu tempo, Descartes exerceu uma incomum influência na história das ideias. Principalmente preocupado em encontrar um fundamento sólido para todo o conhecimento, Descartes fazia parte da longa tradição de filósofos que buscavam as ideias mais básicas, certas e universais das quais tudo o mais se derivaria. Se você entendeu o que Euclides fez com sua estruturação lógico-dedutiva do conhecimento matemático, vai compreender o que Descartes procurou fazer, não só com a matemática, mas com todo o conhecimento humano.

Filósofo de coração, Descartes foi um matemático de grande talento. Ao editar La Géométrie (A Geometria) como um apêndice do seu mais importante livro, o Discurso do Método (1637), Descartes almejou libertar a geometria do uso de diagramas através de procedimentos algébricos e prover sentido geométrico às operações algébricas, fundindo ambas em um único corpo de conhecimentos.

Curiosamente, Descartes não usou o sistema de coordenadas cartesianas (!) ou nenhum outro sistema em sua Géométrie. No entanto, fixou o uso das letras x, y e z para variáveis e a, b e c para constantes; introduziu a moderna notação exponencial, como x3, x4, etc. (mas ainda escrevia xx para o que hoje escrevemos x2); descreveu curvas em termos de suas equações e interpretou equações em termos de curvas, além de ter quebrado com o antigo princípio da homogeneidade, que escravizou a imaginação matemática a considerar x como um segmento e xx como uma área.

A “tradução” bidirecional entre geometria e álgebra operada por Descartes inspirou os matemáticos posteriores a procurar traduções entre outros campos e a criar métodos e soluções seguras para problemas que seguiam intratáveis até então. A álgebra, que opera de maneira mecânica com um conjunto pequeno e sólido de princípios e regras, garante a toda a matemática que nela se fundamenta segurança e solidez. E assim teve início, com a obra de Descartes, a mecanização moderna da matemática — em nosso benefício?

Discussão

  1. Você acredita que é possível encontrar os princípios primeiros do conhecimento humano, como Descartes pretendia? Quais princípios seriam esses?
  2. O que você pensa do uso da álgebra em problemas de geometria? Acredita que seja uma coisa natural ou é algo que nos é imposto em função de alguma necessidade?
  3. Será que toda a matemática pode ser mecanizável de maneira a ser melhor operada por computadores? É bom que assim o seja?

Para saber mais

Seria interessante que você pesquisasse mais um pouco sobre

  • coordenadas polares
  • Discurso do Método
  • cogito ergo sum
Categorias
História da matemática Logaritmos Matemática Napier

Logaritmos

A calculadora conhecida como “Ossos de Napier”
Fonte: Wikimedia Commons

Uma experiência comum entre professores de matemática é ouvir de alunos a provocativa pergunta “para que serve?”. E uma experiência ainda mais comum entre os alunos que não fazem tais perguntas é suspeitar que quase toda a matemática que aprenderam não serve para absolutamente nada. Ambas as experiências são falsamente reforçadas quando o tema em questão são os logaritmos.

Foi o matemático escocês John Napier (1550 – 1617) que introduziu os logaritmos como expediente de cálculo para simplificar as tediosas operações com números de muitos dígitos, necessárias aos astrônomos e navegadores da época. Com os logaritmos, operações de multiplicação, divisão e exponenciação se transformam em simples adições, subtrações e multiplicações. Mas como?

Suponha que você necessite realizar a multiplicação 32 x 128 e tem ao seu lado uma tabela de potências de 2. Olhando a tabela, você percebe que 32 = 25 e 128 = 27. Daí percebe que para multiplicar esses números basta somar os expoentes 5 e 7 e achar 12. Com esse valor, você olha de novo na tabela e vê que 212 = 4096, encontrando a resposta da multiplicação. Você evitou uma multiplicação com uma adição e três olhadelas em uma tabela.

Pareceu mais complicado do que realizar a multiplicação? Mas não é. Imagine multiplicar números como 3,476098 e 1,775369 dezenas de vezes durante o dia. Mais fácil seria transformar essas multiplicações todas em adições, olhando em uma tabela os expoentes de 3,476098 e 1,775369, somar esses expoentes e novamente olhar na tabela o número que corresponde ao expoente encontrado. Quando usados dessa forma, esses expoentes são chamados de logaritmos.

Napier viria a aperfeiçoar sua invenção juntamente com o matemático inglês Henry Briggs (1561 – 1630) e, a partir de então, os logaritmos se tornariam o mais importante avanço nas técnicas de cálculo até a invenção do computador digital, cerca de 400 anos depois.

Napier dedicou muito do seu tempo para desenvolver instrumentos de cálculo. Além dos logaritmos, desenvolveu uma espécie de ábaco chamado carinhosamente de ossos de Napier. A figura no início deste post mostra como era um instrumento desse: tabelas de multiplicação eram incorporadas em hastes que, quando giradas, transformavam multiplicações em adições e divisões em subtrações, seguindo a mesma lógica dos logaritmos. Em versões mais avançadas, extraíam até raízes quadradas. Os ossos de Napier foram inspirados em ideias de matemáticos árabes e também nas de Fibonacci, mostrando mais uma vez a influência de ambos na cultura europeia.

Pouco antes das calculadoras eletrônicas, era comum encontrar engenheiros utilizando réguas de cálculo em seus projetos. Esses instrumentos fascinantes incorporavam os logaritmos em sua construção e possibilitavam rapidez e precisão de resultados, dispensando tabelas e cálculos manuais. Ainda hoje são interessantes como instrumentos didáticos, e é comum encontrá-las em laboratórios de matemática nas universidades.

Alguns professores se desviam da pergunta impertinente “para que serve” dizendo coisas como “no futuro você verá” ou “para desenvolver o raciocínio”. Além de frustrarem as ambições científicas dos alunos, respostas como essas concorrem para demonstrar a ignorância do professor e as deficiências de sua formação. Melhor seria dizerem — e procurarem mostrar — como os logaritmos são usados na escala Richter, que mede a intensidade dos terremotos; no cálculo do potencial hidrogeniônico, o famoso pH, que calcula acidez ou a basicidade das substâncias; no cálculo da complexidade computacional, que classifica algoritmos segundo sua dificuldade inerente; na música, com o cálculo dos intervalos musicais; no cálculo da entropia de um sistema, medindo seu nível de desordem; e no cálculo da dimensão dos fractais. Mas será que os professores não acharão que isso “complica demais as coisas”?

Discussão

  1. Os logaritmos surgiram devido a necessidades práticas dos cientistas. Você acha que toda matemática é criada a partir de alguma urgência pragmática?
  2. Se os esforços dos matemáticos se concentraram, durante muito tempo, em construir máquinas que fizessem as contas mais tediosas para eles, por que você deveria aprender a realizá-las com lápis e papel?
  3. Você consegue dizer alguma outra aplicação dos logaritmos além daquelas discutidas no texto?

Para saber mais

Procure saber mais sobre:

  • exponenciação e radiciação
  • régua de cálculo
  • escala Richter
  • pH
  • dimensão fractal