Categorias
História da matemática

Omar Khayyam, a poesia e a matemática

Aos céus enviei minha alma
Em busca do segredo eterno…
Na volta, me diz, já bem calma:
‘Eu mesma sou Céu e Inferno’

Do Rubaiyat

Omar Khayyam nasceu em maio de 1048 na rica e próspera Nixapur, no nordeste do Irã, tendo ali vivido e morrido, em dezembro de 1131, após uma vida de grandes realizações.

Categorias
Fibonacci História da matemática

Fibonacci e seu Liber Abaci

Leonardo de Pisa (c. 1170 – c. 1240/1250) é o mais interessante matemático do século XIII. Nascido em Pisa, na Itália, mudou-se ainda jovem com o pai, Guglielmo dei Bonacci, para a cidade de Bugia, na Argélia, onde passou parte de sua vida. Matemático e escritor, é autor do influente Liber Abaci (Livro do Ábaco), obra que termos a oportunidade de conhecer a seguir.

Categorias
História da matemática Matemática Papiro de Rhind

O papiro de Rhind

Por volta de 1.650 a.C., um certo escriba egípcio chamado Ahmes (ou Amósis) finalizou aquela que seria não a mais antiga, mas a mais notável obra de matemática egípcia de que temos conhecimento: um livro escrito sobre uma imensa folha de 5,5 metros por 30 cm de altura, feita com tiras prensadas do caule de uma planta chamada papiro. Finalizada a escrita, essa longa folha era então enrolada e transportada como se fosse um bastão, e passava assim a ser catalogado em grandes bibliotecas de papiros. Mas o que dizia esse livro em particular que tanto interessa a matemáticos e historiadores da ciência?

Categorias
História da matemática

Plimpton 322

Em 1922, um editor de Nova York de nome George Plimpton comprou de um comerciante displicente, por apenas 10 dólares, uma pequena tabuinha de argila com marcas feitas com algum tipo de estilete. Plimpton viu algum valor histórico na peça mas não soube precisar do que se tratava, e acabou doando a tabuinha à Universidade de Columbia. Foi então que os pesquisadores descobriram um dos mais fascinantes documentos da história da matemática na antiguidade.

Categorias
Álgebra História da matemática

Al-Khwarizmi e a álgebra

Apenas um matemático em toda a história foi capaz de emprestar seu nome a dois importantes conceitos e ter o título de seu principal livro como o nome de toda uma ciência: Abu Jafar Muhammad ibn Musa al-Khwarizmi (c. 780 – c. 850). De seu nome, também escrito em português como Alcuarismi, temos as palavras algarismo e algoritmo, e de seu mais importante tratado matemático, o Al-Kitab al-mukhtasar fi hisab al-jabr wa-l-muqabala (c. 823), temos o nome álgebra. Mas quem foi esse matemático e do que tratava seu livro?

Categorias
Alcuíno História da matemática Resolução de problemas

Alcuíno e suas Propositiones

Não é a primeira vez que escrevo sobre uma personalidade que ainda me enche de admiração e respeito. Alcuíno de York (735 – 804), o “Ministro da Educação e da Cultura”, por assim dizer, do imperador Carlos Magno (742 – 814), foi uma figura central na reorganização dos conhecimentos medievais, uma mescla de conhecimentos da Antiguidade com as contribuições cristãs, preparando terreno para as futuras universidades europeias, em uma época quando já existiam universidades muçulmanas no norte da África.

Categorias
História da matemática Livros

20 episódios da História da Matemática

Esta é a edição em papel de nosso “20 Episódios da História da Matemática“, um livro de divulgação bastante simples, informativo e de leitura agradável, formado por 20 capítulos sobre história da matemática postados aqui no site.

Categorias
Alcuíno História da matemática Matemática

Proposições para aguçar os jovens

As Proposições para aguçar os jovens foram compiladas ou escritas por volta do ano 800 por Alcuíno de York (738-804). São 53 problemas recreativos de aritmética, álgebra, geometria e lógica, muitos das quais estão na origem de diversas áreas da matemática contemporânea.

Categorias
Educação Matemática Geral

A indeterminação da palavra “matemática”

Ao contrário do que possa parecer, o significado da palavra “matemática” jamais foi estabelecido de maneira definitiva. Essa é uma observação importante, e corrobora a percepção de que o conjunto das coisas a que chamamos de matemática, seja o que isso for, não está bem definido.

Quando surgiu e a que se associou, durante sua longa história, a palavra “matemática”? Antes da resposta, uma advertência: conhecer a origem da palavra não é o mesmo que conhecer a origem da coisa – no caso, a matemática – assim como também não implica dizer que matemática é hoje aquilo que foi um dia associado ao seu nome. Pensar que existe um significado verdadeiro para alguma coisa, e que esse significado é aquele original, é um raciocínio falso conhecido como falácia etimológica. Palavras e seus significados mudam com o tempo, e “matemática” não escapa a esse processo.

É costume suspeitar que os nomes das mais diversas ciências tenham origem em palavras gregas. Com exceção de um ou outro, como química, um palavra de origem árabe, a suspeita em geral se confirma: física, história, geografia e muitas outras são palavras derivadas de raízes gregas. Não deve nos espantar que matemática também o seja.

Nossa análise começa com a raiz grega math, ligada a noções como aprender e conhecer. Dessa raiz, muitas palavras são derivadas. Por exemplo, o verbo mantháno, que significa eu aprendo, eu conheço. Quem aprende é um mathetés, um aprendiz. Aquilo que um mathetés aprende é um máthema, um objeto de aprendizagem, objeto de conhecimento, cujo plural é mathémata.

De máthema formamos o adjetivo mathematiké, que significa relativo ao conhecimento. A arte de conhecer, por exemplo, era dita mathematiké techné. Desse adjetivo mathematiké derivamos o substantivo plural mathematiká, que se traduz como as coisas cognoscíveis. Este é o significado original de matemática.

Repare como máthema se associa a um significado vago. Quando tradutores se deparam com essa palavra (ou seu plural mathémata) em alguns textos, as opções tradutórias costumam ser ciência, conhecimento ou mesmo matemática, segundo o contexto.

Desde os tempos de Pitágoras (c. 570 – c. 495 a.C.), no entanto, havia uma tendência a restringir o significado da palavra matemática a apenas alguns mathémata, como a aritmética, a geometria, a astronomia e a música, que em latim viriam a ser conhecidos conjuntamente como quadrivium. Platão (428 – 348 a.C.) tendia a considerar esses assuntos como os mais importantes mathémata. Afirmava, no entanto, em seu livro República, que o principal máthema era a Ideia do Bem (Platão, 1990: 505a). Aristóteles (384-322 a.C.), o principal e mais influente discípulo de Platão, definia a matemática como a ciência da quantidade, e daí notamos o início da constituição do núcleo conceitual que serviria posteriormente para selecionar e classificar, dentre os mais diversos mathémata, aqueles que seriam ditos matemáticos.

Apesar da influência de Platão e Aristóteles, a restrição do significado não ocorreu como podemos imaginar. Com o filósofo grego Sexto Empírico (c. 160 – c. 210 d.C.), que viveu cerca de seis séculos depois de Platão, notamos ainda o termo matemático usado para designar aqueles que hoje chamamos de professores. Em sua obra Contra os matemáticos, dividida em onze capítulos ou livros, Sexto Empírico envidou uma crítica aos professores de gramática, retórica, geometria, aritmética, astrologia, música, lógica, física e ética. Todos esses profissionais, dedicados ao estudo e ao ensino dessas disciplinas, eram considerados matemáticos: estudavam e ensinavam mathémata.

E o processo de significação continuou. Gramáticos, retóricos e éticos deixaram de ser chamados de matemáticos e a velha ênfase no quadrivium foi prevalecendo, tornando-o como que um critério para decidir o que é e o que não é matemática. O que se assemelhasse a algum dos mathémata do quadrivium, ou deles faziam uso, seria dito matemática. Será que esse critério se estabeleceria como definitivo?

O matemático britânico Keith Devlin, tentando entender o que é matemática hoje, sugere um interessante exercício de futurologia (Devlin, 2012): prever o que será a matemática daqui a 100 anos. Devlin argumenta que, historicamente, temos nos deparado com problemas e situações que continuamente exigem a criação novas categorias e de novas lógicas que reordenem a massa de nossos conhecimentos. Por exemplo, o trabalho dos linguistas consiste em localizar nas línguas padrões repetitivos e suficientemente estáveis que são formalizados em uma linguagem a que chamaríamos de matemática. O que pensar disso? Será que futuramente o significado de matemática voltará a ser tão amplo como o foi uma vez com Sexto Empírico?

Essas considerações nos indicam que a palavra matemática está sujeita, como toda palavra, a uma dinâmica de inflação e deflação de significado: às vezes bastante amplo, às vezes mais restrito. É como uma lenta respiração que leva séculos para se realizar.

É importante saber também que o significado da palavra matemática não é estabelecido por obra de um filósofo ou de um cientista particular, mas pela comunidade que a estuda e a utiliza. Significados não sou obras de indivíduos, mas de sociedades e de instituições que os selecionam em um processo semelhante ao da evolução biológica. A vida das palavras, assim com a dos seres vivos, está sempre indeterminada. Não existe nada nas palavras e nos conceitos que nos obrigue a agrupá-los desta ou daquela maneira. Quais consequências podemos tirar disso? O que faz com que um certo conjunto de mathémata receba um nome geral?